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Algebraic and exponential instabilities
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Based on a micropolar continuum of rough granular particles that takes into
account the balance equations for the spin (/rotational) velocity and the spin
granular temperature, the linear stability characteristics of an unbounded shear
flow (u ≡ (ux, uy, uz) = (γ̇ y, 0, 0), where x, y and z are the streamwise, transverse
and spanwise directions, respectively, and γ̇ is the shear rate) are analysed. For pure
spanwise perturbations (kz �= 0, with kx = 0 = ky , where ki is the wavenumber in the ith
direction), we show that the streamwise translational velocity and the transverse spin
velocity modes are subject to linear growths, owing to an inviscid ‘algebraic’ instability
(that grows linearly with time). This algebraic instability is shown to be tied to a
hidden mechanism of momentum transfer from the translational to the rotational
modes, via pure spanwise perturbations to the transverse velocity – in short, we
have uncovered an ‘instability-induced rotational-driving’ mechanism. Pure spanwise
(kz �= 0, with kx = 0 = ky) and pure transverse (ky �= 0, with kx =0= kz) perturbations
give rise to ‘exponential’ instabilities (that grow exponentially with time) which are
related to similar stationary instabilities in the shear flow of smooth, inelastic particles.
Both these instabilities also survive in the limiting case of perfectly elastic but rough
particles. The scalings of hydrodynamic modes with wavenumbers have been obtained
via the respective long-wave expansion. Perturbations with modulations in all three
directions are shown to be stable in the asymptotic time limit, but there could
be short-time ‘exponential’ growth of these general perturbations in the long-wave
limit for both travelling and stationary waves. The growth rate of all instabilities
is maximum at intermediate values of the tangential restitution coefficient (β), and
decreases in both the perfectly smooth (β → −1) and rough (β → 1) limits; the
associated instability length scale is minimum at intermediate β , and increases in
both the perfectly smooth and rough limits. In the perfectly smooth limit, there is a
window of particle volume fraction (φ), φs

c < φ < φt
c, over which the flow remains

stable to all perturbations. With the inclusion of spin fields, the size of this window
decreases and at moderate dissipations with β > 0.5 the flow becomes unstable at all φ.

1. Introduction
During the last two decades, much work has been devoted to understanding the

rheology (see, for reviews, Savage 1984; Hutter & Rajagopal 1994) and, more recently,
the dynamics of granular materials (see, for reviews, Jaeger, Nagel & Behringer 1996;
Herrmann, Hovi & Luding 1998; Kadanoff 1999; Goldhirsch 2003). In the rapid
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flow regime in which the particles move around randomly, interacting mainly via
instantaneous dissipative collisions with negligible interstitial fluid effects, the granular
material has been modelled as a system of smooth inelastic hard spheres. The standard
statistical mechanical tools of the kinetic theory of dense gases have been modified to
develop appropriate rheological models for a continuum description of such fluidized
granular materials (Lun et al. 1984; Jenkins & Richman 1985; Goldshtein & Shapiro
1995; Sela & Goldhirsch 1998; Montanero et al. 1999). If the particles are smooth,
their collisions can be characterized by a single parameter, the normal restitution
coefficient (e), with the limiting case of e = 1 being tied with elastic collisions and no
energy loss. It is now well-known that this ‘added’ inelasticity is a source of many
interesting and unresolved phenomena in granular flows.

The stability analyses of granular shear flows have attracted much attention recently
(Savage 1992; Babic 1993; Schmid & Kytömaa 1994; Wang, Jackson & Sundaresan
1996; Alam & Nott 1997, 1998; Tan & Goldhirsch 1997; Alam 2005, 2006); the
Navier–Stokes-level hydrodynamic equations are routinely used for such analyses. The
major motivation of these works has been the desire to understand certain dynamical
features of shear flows (clustering or density inhomogeneities, plug formation, etc.;
Hopkins, Louge & Jenkins 1993; Goldhirsch & Zanetti 1993; Tan & Goldhirsch
1997; Luding & Herrmann 1999; Conway & Glasser 2004; Alam 2005) as well as
to uncover the scalings of the underlying hydrodynamics modes (Mello, Diamond &
Levine 1991; McNamara 1993). Explaining the dynamics of granular fluids using
continuum equations is a stringent test of the adopted constitutive models. Note that
all these stability analyses were carried out using constitutive models for smooth
inelastic particles.

Real particles are always characterized by some degrees of roughness, giving rise to
surface friction. Consequently, the rotational motion becomes important to deal with
rough, frictional particles. Even in the limit of nearly inelastic particles (e ≈ 1), the
added complexity of the rotational motion gives rise to additional hydrodynamic
fields: the spin/rotational velocities and the rotational granular temperature
(Condiff & Dahler 1964; Theodosopulu & Dahler 1974; Dahler & Theodosopulu
1975; Jenkins & Richman 1985; Lun & Savage 1987; Lun 1991; Luding et al. 1998;
Mitarai, Hayakawa & Nakanishi 2002; Hayakawa 2003; Goldhirsh, Noskowicz &
Bar-Lev 2005). It turns out that the translational and rotational temperatures of
a granular fluid are not equally partitioned (Lun & Savage 1987; Lun 1991;
Huthmann & Zippelius 1997; McNamara & Luding 1998), except in the perfect
rough limit. More importantly, at finite densities, there is an additional contribution
to the stress tensor that renders it asymmetric – a signature of the micropolar theory
(Condiff & Dahler 1964; Kanatani 1979; Mitarai et al. 2002). Another new ingredient
associated with rotational motion is the transport via the couple stress (i.e. the flux
of angular momentum) which becomes important in the presence of boundaries. The
implications of the additional hydrodynamic fields, the energy non-equipartition, the
asymmetric stress tensor and the couple stress on the dynamical behaviour of a
granular fluid are not known a priori, and have not been investigated before for a
driven system like shear flow.

The molecular dynamics (MD) simulation work of Moon, Swift & Swinney (2004)
has elucidated the role of friction on pattern formation in oscillated granular layers.
They found that while the square, stripe and hexagonal patterns are stable for
frictional particles (that match with experimental results), only the stripe-pattern is
stable for frictionless particles. Certain experimental phenomena (e.g. the parametric
sloshing of particles, the shock-wave formation, etc.) also occur in MD simulations
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with and without friction, but there are important differences in the details of these
phenomena. There has been some work on the ‘rotational-driving’ of a granular
fluid (Cafiero, Luding & Herrmann 2002; Luding, Cafiero & Herrmann 2003). These
authors showed that a granular fluid can be made spatially homogeneous even at very
high dissipation levels by transferring energy from the rotational degrees of freedom
to their translational counterpart, even though its (translational) velocity distribution
function shows large deviations from a Maxwellian. They also explained some recent
experimental results (see, for details, Luding et al. 2003) by driving on both the
translational and the rotational degrees of freedom. The consensus that emerges from
the above discussion is that the rotational motion should not be neglected for a
realistic modelling of the dynamics and pattern formation in granular media even in
the dilute limit.

In the present paper, we investigate the effects of rotational motion on the stability
characteristics of the unbounded shear flow of rough and inelastic particles. A
micropolar continuum is used to treat the rotational degrees of freedom: the collision
model of rough particles and the balance equations are briefly described in § § 2.1
and 2.2, respectively; the kinetic-theory-based constitutive model of Lun (1991) is
used for the rheology of granular materials as in § 2.3. The non-dimensional balance
equations are written down in § 3.1 and the base state of the unbounded uniform
shear flow is analysed in § 3.2. The base state of the unbounded shear flow is
characterized by a linear streamwise velocity profile, (u ≡ (ux, uy, uz) = (γ̇ y, 0, 0),
where x, y and z are the streamwise, transverse and spanwise directions, respectively,
and γ̇ is the shear rate), with constant values of solid fraction, spanwise spin velocity,
and translational and spin granular temperatures. The linear stability problem of this
flow is formulated in § 4, via the Kelvin-mode decomposition. The stability results
for streamwise-independent perturbations (as well as the scalings of hydrodynamic
modes with wavenumbers) are presented and discussed in § 5. We have uncovered
an inviscid algebraic instability (see § 5.1 for details) for pure spanwise perturbations
that is directly connected to a hidden mechanism of momentum transfer from the
translational degrees of freedom to their rotational counterparts. Both the long-
time and short-time behaviour of streamwise-dependent perturbations (kx �= 0) are
analysed in § 6. The possible effect of Coulomb friction on the observed instabilities is
discussed briefly in § 7.1, and the limitations of Lun’s constitutive model is discussed
in § 7.2. We summarize our results with conclusions in § 8.

2. Micropolar theory for rough inelastic particles
2.1. Background: collision model

We consider a monodisperse system of rough inelastic spheres of size σ , mass m,
material density ρp and the moment of inertia I, interacting via the hard-core
potential. The moment of inertia can be expressed in terms of a non-dimensional
shape factor:

K =
4I
mσ 2

, (2.1)

with K = 2/5 for solid spheres and 2/3 for a thin-shell sphere. The pre-collisional
translational and angular velocities of particle i are denoted by ci and ωi , respectively,
and their post-collisional counterparts by c′

i and ω′
i , respectively. The precollisional

relative velocity at contact, gij , between particles i and j is given by

gij = cij − k × (ωi + ωj ), (2.2)
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where cij = ci − cj is the translational velocity of the ith particle relative to that of
the j th particle, and kij = xpj − xpi = k the contact vector directed from the centre of
the ith particle to that of the j th particle.

For the simplest model of rough inelastic spheres (Lun & Savage 1987), the pre-
and post-collisional velocities of the colliding particles are related via the following
expressions:

k · g′
ij = −e(k · gij ), k × g′

ij = −β(k × gij ), (2.3)

where e is the normal coefficient of restitution, and β the tangential coefficient
of restitution. The former is an indicator of the inelasticity of a particle and the
latter an indicator of its surface roughness; in general, 0 � e � 1 and −1 � β � 1. For
collisions between perfectly smooth particles, β = −1, with the increasing value of β

being an indicator of the increasing degrees of particle surface friction. The value of
β = 0 represents the case for which the particle surface friction and inelasticity are
sufficient to eliminate the post-collisional tangential relative velocities. For 0<β � 1,
the spin-reversal occurs after collision (Maw, Barber & Fawcett 1981), and the case of
β = 1 corresponds to collisions between perfectly rough particles. For a discussion on
collision models with oblique impact and Coulomb friction, and the range of validity
of the present constant-β approximation, see Appendix A.

2.2. Hydrodynamic fields and balance equations

The hydrodynamic field variables are defined via the standard coarse-graining of
the particle-level variables (the particle mass m, its linear momentum mc, angular
momentum Iω, translational kinetic energy mc2/2 and rotational kinetic energy
Iω2/2) using the single-particle velocity distribution function f (xp, c, ω; t), where xp

refers to particle’s position vector (Dahler & Theodosopulu 1975; Lun 1991).
The coarse-grained mass-density, �(x, t) =mn= ρpφ, the translational velocity,

u(x, t), and the spin velocity, Ω(x, t), are defined as

�(x, t) = mn = m

∫
f (xp, c, ω; t) dc dω, (2.4)

u(x, t) = 〈c〉 =
1

n

∫
cf (xp, c, ω; t) dc dω, (2.5)

Ω(x, t) = 〈ω〉 =
1

n

∫
ωf (xp, c, ω; t) dc dω, (2.6)

where n= n(x, t) is the (coarse-grained) particle number density and φ the volume
fraction of particles (‘solid fraction’). The coarse-grained ‘translational’ fluctuation
kinetic energy (i.e. the standard granular temperature), T (x, t), and the rotational
fluctuation kinetic energy, θ(x, t), are defined as

T (x, t) = 1
3
〈C · C〉 = 1

3
〈C2〉, (2.7)

θ(x, t) =
I
3m

〈W · W〉 =
I
3m

〈W 2〉. (2.8)

These two higher-order hydrodynamic fields are required as the transport coefficients
are functions of T and θ . Here, C = c − u is the peculiar velocity (that measures the
deviation of the instantaneous particle velocity from the local mean velocity). Similar
to the peculiar velocity, W = ω − Ω measures the deviation of the instantaneous
particle spin from the local mean spin velocity.
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The balance equations for mass, linear momentum, angular momentum, transla-
tional granular temperature and rotational granular temperature are:

∂�

∂t
+ ∇ · (�u) = 0, (2.9)

�

(
∂

∂t
+ u · ∇

)
u = −∇ · P + �b, (2.10)

nI
(

∂

∂t
+ u · ∇

)
Ω = −∇ · G + Ψ + �bc, (2.11)

3
2
�

(
∂

∂t
+ u · ∇

)
T = −∇ · q − P : ∇u − D, (2.12)

3
2
�

(
∂

∂t
+ u · ∇

)
θ = −∇ · qr − G : ∇Ω − Dr − Ω · Ψ , (2.13)

respectively. Here, P is the stress tensor (linear momentum flux), G the angular
momentum flux (couple stress), b the external body force per unit mass, bc the
external body couple per unit mass, Ψ the source of angular momentum, q the
translational granular heat flux, qr the rotational granular heat flux, D the rate of
dissipation of translational granular energy per unit volume, and Dr the rate of
dissipation of rotational granular energy per unit volume. The term P : ∇u in (2.12)
represents the rate of production of translational energy due to shear work, and
G : ∇Ω in (2.13) represents the rate of production of rotational energy.

For inelastic and rough particles, a two-temperature theory should be used since the
translational and rotational temperatures are not equally partitioned (except in the
perfectly rough limit). The issue of using separate balance equations for T and θ even
for a system of elastic rough spheres has been discussed by many (see, for example,
McCoy, Sandler & Dahler 1966). It may be noted that the above set of balance
equations has also been derived by Babić (1997) for both quasi-static and rapid
granular flows using a general weighted space–time averaging technique. Therefore,
these balance equations are of a general nature, and can be used for fluids for which
the micro-rotation fields play an important role. Of course, the difference appears
only in the choice of the constitutive model which depends on the type of the flow
that one is interested in.

2.3. Constitutive model

We have chosen the constitutive model of Lun (1991) who derived analytical
expressions for all flux terms up to the Navier–Stokes-order for rough inelastic
particles, using the generalized moment method. For a system of perfectly elastic
particles (e = 1), this constitutive model boils down to that of Theodosopulu &
Dahler (1974) except for the bulk viscosity and the collisional flux of translational
energy. On the other hand, in the limit of perfectly smooth (β = −1), inelastic particles,
the model of Lun et al. (1984) is recovered. Note that the transport coefficients of the
Lun-model (pressure, viscosity and stress-ratio) have been tested via MD simulations
of shear flow (Lun & Bent 1994) with a fair agreement between simulation and theory
for three different values of β = −1, −0.5, 0 over a range of volume fractions. The
limitations of this constitutive model and the robustness of our stability results for
the whole range of β ∈ (−1, 1) are discussed in § 7.2.

The stress tensor can be decomposed as:

P = [p − ξ (∇ · u)]1 − 2µS − µr1 × (2Ω − ∇×u), (2.14)
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with the deviatoric part of the deformation tensor being given by

S = 1
2
(∇u + ∇uT ) − 1

3
(∇ · u)1, (2.15)

and 1 is the identity tensor. Here, p is the pressure, and µ, ξ and µr are the shear-,
bulk- and ‘vortex’ spin-viscosities, respectively, which are functions of the particle
size, number density, solids fraction, granular temperature, etc. Note that there is an
additional contribution to the stress tensor that arises from the difference between
the rotation due to the translational velocity (i.e. vorticity) and the spin velocity, Ω .
This term makes the stress tensor asymmetric, i.e. Pij �= Pji , which is a signature of
the micropolar fluid. Note that this term is proportional to the ‘vortex’ spin viscosity
µr (hereinafter µr will be referred to as the vortex viscosity; Condiff & Dahler 1964)
which is a measure of the resistance of the fluid to the rotational motion, and it
represents a coupling between the rotation due to the translational velocity and the
micro-rotation field itself.

The constitutive expressions for the pressure, the shear viscosity, the bulk viscosity
and the vortex viscosity are given by:

p = ρpTf1(φ, e), µ = ρpσT 1/2f2(φ, θ/T ; e, β, K),

ξ = ρpσT 1/2f3(φ; e), µr = ρpσT 1/2f2r (φ; β, K).

}
(2.16)

where fi(·) are non-dimensional functions of φ, θ/T , e and β as detailed in
Appendix B. It can be verified that

µr → 0 as φ → 0, (2.17)

i.e. the vortex viscosity is identically zero in a dilute granular gas, and hence the
additional contribution to the stress tensor (in (2.14)) vanishes in the dilute limit.
Therefore, the stress tensor for a system of rough particles is symmetric in the
Boltzmann limit (φ → 0), and its asymmetry is a consequence of the Enskog-level
correction (φ �= 0) to transport coefficients. We note that this stress-asymmetry
appears at the Navier–Stokes-order of approximation.

At the Navier–Stokes-order of approximation, both the kinetic and collisional
components of the couple stress are zero, i.e.

G = Gkin + Gcol = 0. (2.18)

This has been verified in MD simulations of the uniform shear flow of rough
granular materials (Campbell 1993; Lun & Bent 1994). Only at the Burnett-order
approximation, do we obtain non-zero contributions to the couple stress. We note
in passing that the couple stresses play an important role on the dynamics of the
flow near the boundaries, with the bulk quantities remaining relatively unaffected,
as confirmed by the MD simulations of bounded Couette flow (Campbell 1993) and
of inclined chute flow (Mitarai et al. 2002). Since the present work is devoted to
unbounded shear flow, we do not consider any boundary effect (see, last paragraph
in § 8) and hence the couple stress G is set to zero in the present analysis (refer to
equations (2.11) and (2.13)).

The constitutive expression for the angular momentum source, Ψ , is given by:

Ψ = −2µr (2Ω − ∇×u). (2.19)

It is clear that the transfer of angular momentum arises if the spin velocity differs
from the mean vorticity of the flow, i.e. if Ω �= (1/2)∇×u.
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The translational (q) and rotational (qr ) heat fluxes can be written in a generalized
Fourier form:

q = −κ∇T − κh∇θ, (2.20)

qr = −κr∇T − κrh∇θ, (2.21)

where the translational and rotational ‘pseudothermal’ conductivities κ , κh, κr and κrh

are

κ = ρpσT 1/2f4(φ, θ/T ; e, β, K), κh = ρpσT 1/2f4h(φ, θ/T ; e, β, K),

κr = ρpσT 1/2f4r (φ, θ/T ; e, β, K), κrh = ρpσT 1/2f4rh(φ, θ/T ; e, β, K),

}
(2.22)

and the rate of dissipation of translational (D) and rotational (Dr ) kinetic energy (per
unit volume) are given by:

D =
ρp

σ
T 3/2f5(φ, θ/T ; e, β, K), (2.23)

Dr = −ρp

σ
T 3/2f5r (φ, θ/T ; β, K), (2.24)

where the expressions for f4i(·) and f5i(·) are provided in Appendix B.
For the Enskog-corrected transport coefficients, we need an expression for the radial

distribution function which is taken to be that of Carnahan and Starling:

χ(φ) =
(1 − φ/2)

(1 − φ)3
, (2.25)

that diverges as φ → 1. Another well-known functional form for χ(φ) is

χ(φ) =
1

1 − (φ/φmax)1/3
, (2.26)

that diverges in the limit φ → φmax , where φmax = 0.65 for the random close-packing
limit for spheres. Both (2.25) and (2.26) will be used to check the dependence of
stability properties on χ(φ).

3. Non-dimensional equations and the base state
3.1. Non-dimensional equations of motion

We have non-dimensionalized all quantities via the following scaling:

x∗ =
x
σ

, t∗ = γ̇ t, u∗ =
u

σ γ̇
, Ω∗ =

Ω

γ̇
, T ∗ =

T

σ 2γ̇ 2
,

θ∗ =
θ

σ 2γ̇ 2
, P∗ =

P

ρpσ 2γ̇ 2
, Ψ ∗ =

Ψ

ρpσ 2γ̇ 2
,

(q∗, q∗
r ) =

1

ρpσ 3γ̇ 3
(q, qr ), (D∗, D∗

r ) =
1

ρpσ 2γ̇ 3
(D, Dr ),

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.1)

where γ̇ is the shear rate. Here onward, for convenience, we will omit the starred-
superscript and denote non-dimensional quantities by their bare counterparts. The
resulting non-dimensional equations in the absence of body force and body couple
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take the following form:

∂φ

∂t
+ ∇ · (φu) = 0,

φ

(
∂

∂t
+ u · ∇

)
u = −∇ · P,

1
4
Kφ

(
∂

∂t
+ u · ∇

)
Ω =Ψ ,

3
2
φ

(
∂

∂t
+ u · ∇

)
T = −∇ · q − P : ∇u − D,

3
2
φ

(
∂

∂t
+ u · ∇

)
θ = −∇ · qr − Dr − Ω · Ψ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

The non-dimensional forms of the stress tensor P, the angular momentum source Ψ ,
the translational and rotational heat fluxes, q and qr , respectively, are the same as
in (2.14) and (2.19)–(2.21), with the associated non-dimensional transport coefficients
having the following forms:

p(φ, T ) = Tf1(φ), µ(φ, T , θ) =
√

T f2(φ, θ/T ),

µr (φ, T ) =
√

T f2r (φ), ξ (φ, T ) =
√

T f3(φ),

κ(φ, T , θ) =
√

T f4(φ, θ/T ), κh(φ, T , θ) =
√

T f4h(φ, θ/T ),

κr (φ, T , θ) =
√

T f4r (φ, θ/T ), κrh(φ, T , θ) =
√

T f4rh(φ, θ/T ),

D(φ, T , θ) = T 3/2f5(φ, θ/T ), Dr (φ, T , θ) = −T 3/2f5r (φ, θ/T ).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.3)

3.2. Base state: uniform shear flow and energy non-equipartition

We consider the three-dimensional unbounded shear flow of a micropolar granular
fluid in the absence of gravity, with the streamwise, transverse and spanwise coordinate
axes being denoted by x, y and z, respectively. The base state is steady (∂/∂t(·) = ) and
fully developed (∂/∂x(·) = 0), having no variation in the spanwise direction. For this
case, the mass balance equation, the x- and z-components of the linear momentum
equations and the x- and y-components of the angular momentum equations are
identically satisfied. The only non-zero velocity field is the streamwise velocity which
varies linearly with y, with constant density and granular temperatures throughout
the flow field. Thus, the base-state hydrodynamic fields are given by

φ0 = constant,

u0 ≡
(
u0

1, u
0
2, u

0
3

)T
=

(
u0

1yy, 0, 0
)T

,

Ω0 ≡
(
Ω0

1 , Ω
0
2 , Ω

0
3

)T
=

(
0, 0, −u0

1y/2
)T

,

T 0 ≡ T 0(φ0, e, β) = constant,

θ0 ≡ θ0(φ0, e, β) = constant.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.4)

where u0
1y is the non-dimensional shear rate. The base-state fields are denoted by

a superscript ‘0’, and the subscripts 1, 2 and 3 to the velocity fields refer to their
components in the x, y and z directions, respectively. We will analyse the stability
characteristics of this uniform-shear base flow (3.4).

The base-state spin-velocity field, Ω0, is obtained from the balance equation of
angular momentum:

Ψ 0 = 0 = (2Ω0 − ∇×u0)

⇒ Ω0 = 1
2

(
0, 0, −u0

1y

)T
=

(
Ω0

1 , Ω
0
2 , Ω

0
3

)T
. (3.5)
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Thus, the mean spin velocity is equal to the rate of ‘rotational’ bulk deformation (i.e.
the mean vorticity), and, as a consequence, the stress tensor for the uniform-shear
base flow remains symmetric. Equation (3.5), together with the balance equation of
rotational granular energy, yields an expression for the ratio between θ0 and T 0:

D0
r = 0 = −T 03/2

f 0
5r , ⇒ θ0

T 0
=

η2

(1 − η2/K)
, (3.6)

where η2 = (1 + β)K/2(1 + K). If the translational and the rotational granular
temperatures are equally partitioned (i.e. T 0 = θ0), then it follows that β ≡ 1 which
corresponds to perfectly rough particles. The other extreme of perfectly smooth
particles (β = −1) yields θ0 = 0, i.e. all the energies are contained in the translational
degrees of freedom (see figure 2a of McNamara & Luding 1998). Thus, under general
conditions (−1 <β < 1), the equipartition principle does not hold for a sheared
granular system. It is worth mentioning that the above temperature ratio has been
tested in MD simulations of shear flow (McNamara & Luding 1998), with the
collision model being the same as discussed in § 2.1. They found almost perfect
agreement between simulation and theory (see their figure 2a) for the whole range of
β ∈ (−1, 1). They also reported similar levels of agreement between simulation and
theory for the vertically vibrated system as well as for the freely cooling system of
rough particles.

An expression for T 0 can be obtained by equating the production term due to
the shear-work (−P0 : ∇u0) with the collisional dissipation term (D0) in the balance
equation for the translational granular energy:

T 0 = u0
1y

2 f2(φ
0, θ0/T 0; e, β, K)

f5(φ0, θ0/T 0; e, β, K)
. (3.7)

Note that by specifying volume fraction of the base flow (φ0) and the two restitution
coefficients (e and β), the base-state fields are completely determined.

4. Linear stability analysis via Kelvin decomposition
To perform the linear stability analysis, we decompose each field variable as the

sum of its mean (denoted by a superscript ‘0’) and a small perturbation (denoted
by a prime), with the mean corresponding to the base flow (3.4): φ(x, y, z, t) =
φ0 + φ′(x, y, z, t), etc. For example, the linearized form of the perturbation stress
tensor is given by

P′ = [p′ − ξ 0(∇ · u′)]1 − 2µ0S′ − 2µ′ S0 − µ0
r1×(2Ω ′ − ∇×u′), (4.1)

with

S′ = 1
2
(∇u′ + (∇u′)T ) − 1

3
(∇ · u′)1.

Note that even though the stress tensor for the present base flow is symmetric,
the perturbation stress tensor remains asymmetric since Ω ′ �=(1/2)∇×u′ (i.e. the
perturbation angular momentum source is non-zero). The perturbations in pressure,
shear and vortex viscosities are

p′ = p0
φφ

′ + p0
T T ′, µ′ = µ0

φφ
′ + µ0

T T ′ + µ0
θ θ

′, µ′
r = µ0

rφφ
′ + µ0

rT T ′, (4.2)

where the subscripts φ, T and θ denote the respective partial derivatives, evaluated
at base-state conditions. The linearized forms of Ψ ′, q ′, q ′

r , D′ and D′
r are obtained

in a similar fashion.
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Substituting the above perturbation flux quantities into the governing equations
and linearizing about the base-state, we obtain a set of linear partial differential
equations for the perturbation variables, X = (φ′, u′

1, u
′
2, u

′
3, Ω

′
1, Ω

′
2, Ω

′
3, T

′, θ ′)T :(
∂

∂t
+ u0

1

∂

∂x

)
X = L(∇, ∇2)X, (4.3)

where L(·) represents the linear stability operator whose explicit form is omitted.
Since the coefficients in (4.3) are constants except in the convective term (u0

1∂/∂x(·) ≡
y∂/∂x(·)), the linear stability equation (4.3) is not invariant under translation along
the transverse direction (y), and hence we cannot seek normal-mode solutions, via
Fourier decomposition, along y. Following Kelvin (1887), however, it can be shown
that these equations (4.3) admit special time-dependent normal-mode solutions of the
following form:

X(x, t) = X̂(t) exp[ik(t) · x], (4.4)

where
X(x, t) = [φ′, u′

1, u
′
2, u

′
3, Ω

′
1, Ω

′
2, Ω

′
3, T

′, θ ′](x, t),

X̂(t) = [φ̂, û1, û2, û3, Ω̂1, Ω̂2, Ω̂3, T̂ , θ̂](t),

k(t) = [kx, ky − kxt, kz].

⎫⎪⎬⎪⎭ (4.5)

Note that the y-component of the wavevector

ky(t) ≡ ky − kxt (4.6)

changes with time, and consequently the wavevector k(t) is turned in the clockwise
direction by the mean shear field. This time-dependence of the wavevector, k(t), arises
solely from the special base flow (i.e. the ‘uniform’ shear field). Substituting (4.4) into
the linearized stability equation (4.3), we obtain a set of nine ordinary differential
equations:

dX̂
dt

= A(t)X̂ (4.7)

where the time-dependent 9 × 9-matrix, A(t), has a quadratic-dependence on time:

A(t) ≡ L(ik, i2k2) = A0 + A1t + A2t
2. (4.8)

The elements of A(t) are given in Appendix C.

4.1. Control parameters

Recall that the base flow is completely specified by specifying the solid fraction
of particles φ0, the coefficient of normal restitution e, the coefficient of tangential
restitution β and the non-dimensional moment of inertia K . The shear rate u0

1y does
not enter into the stability problem since it has been scaled out (u0

1y = 1) owing to our
adopted scaling for non-dimensionalization. There are three stability parameters in the
form of the streamwise (kx), the transverse (ky) and the spanwise (kz) wavenumbers.
Below we present the stability results for the Carnahan–Starling radial distribution
function (2.25), and the consequence of using a different radial distribution function
(2.26) is also discussed alongside.

5. Streamwise-independent perturbations (kx = 0)
In this section, we present stability results for perturbations that do not vary along

the streamwise direction, i.e. the streamwise wavenumber is zero (kx = 0) for such
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perturbations. For kx = 0, it can be verified that A1 = 0 = A2 in (4.8). Since the
stability matrix A is time-independent, we can look for ‘exponential’ solutions in time:

X̂(t) = X̂0e
ωt , (5.1)

leading to an eigenvalue problem, where ω = ωr + iωi , with ωr denoting the growth/
decay rate of perturbations and ωi the frequency of perturbations. The flow is
unstable, stable or neutrally stable for ωr > 0, < 0 and = 0, respectively. (This is the
definition of ‘exponential’/‘asymptotic’ instability.) Pure spanwise perturbations are
treated in § 5.1, pure transverse perturbations in § 5.2, and the general case in § 5.3.

5.1. Pure spanwise perturbations: an ‘algebraic’ instability

Perturbations having variations only in the spanwise direction (i.e. kz �= 0, with
kx = 0 = ky , i.e. the wave-vectors are aligned along the z-direction) are called pure

spanwise perturbations. For this case, the equation for Ω̂3 is decoupled from the rest,
with its solution

Ω̂3(t) = Ω̂3(0) exp
(
−2ckµ

0
r t

)
, (5.2)

that decays to zero as t → ∞, representing a stable mode, and the decay rate is

dictated by the vortex viscosity. The equations for [û1, û2, Ω̂1, Ω̂2] are coupled:

dû1

dt
= − k1û1 + k3Ω̂2 − u0

1yû2,
dû2

dt
= − k1û2 − k3Ω̂1,

dΩ̂1

dt
= k4û2 − k2Ω̂1,

dΩ̂2

dt
= − k4û1 − k2Ω̂2,

⎫⎪⎪⎬⎪⎪⎭ (5.3)

where ki are constants:

k1 = cp

(
µ0 + µ0

r

)
k2

z , k2 = 2ckµ
0
r , k3 = −2icpµ0

r kz, k4 = −ickµ
0
r kz, (5.4)

with cp = 1/φ0 and ck =8/Kφ0. The second and third equations in (5.3) can be mani-
pulated to yield a second-order differential equation for the transverse velocity û2:

d2û2

dt2
+ (k1 + k2)

dû2

dt
+ (k1k2 + k3k4)û2 = 0, (5.5)

with its solution being

û2(t) = A1e
m1t + A2e

m2t , (5.6)

where the exponents m1 and m2 are given by

m1,2 =
(k1 + k2)

2

[
− 1 ±

√
1 − 4(k1k2 + k3k4)

(k1 + k2)2

]
∼ k2

z . (5.7)

Note that

(k1k2 + k3k4) = 2cpckµ
0µ0

r k
2
z > 0,

implying that the real parts of both m1 and m2 are negative. Hence the transverse
velocity decays with time, representing a stable mode. It is straightforward to verify
that the decay rate of this mode increases with the inclusion of vortex viscosity in
comparison to the case of perfectly smooth particles (β = −1). Substituting (5.6) into
the second equation in (5.3), the solution for the streamwise spin-velocity can readily
be obtained as:

Ω̂1(t) = −A1(k1 + m1)

k3

exp(m1t) − A2(k1 + m2)

k3

exp(m2t), (5.8)
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which also decays with time and hence is stable. Note that the constants of integration

can be expressed in terms of û2(0) and Ω̂1(0):

A1 = − (k1 + m2)

(m1 − m2)
û2(0) − k3

(m1 − m2)
Ω̂1(0),

A2 =
(k1 + m1)

(m1 − m2)
û2(0) +

k3

(m1 − m2)
Ω̂1(0).

⎫⎪⎪⎬⎪⎪⎭ (5.9)

It can be verified that the equation for the streamwise velocity û1 satisfies a
second-order differential equation,

d2û1

dt2
+ (k1 + k2)

dû1

dt
+ (k1k2 + k3k4)û1 = −u0

1y

[
d

dt
+ k2

]
û2, (5.10)

which is forced by the transverse velocity and its derivative via the mean shear-field
(u0

1y). The solution for û1 is

û1(t) = A4e
m1t + A5e

m2t + [A6e
m1t + A7e

m2t ]t︸ ︷︷ ︸, (5.11)

where

A3 =

[
(m1 + k1)

(2m1 + k1 + k2)
A1 +

(m2 + k1)

(2m2 + k1 + k2)
A2

]
u0

1y

(m1 − m2)
,

A4 = − (k1 + m2)

(m1 − m2)
û1(0) +

k3

(m1 − m2)
Ω̂2(0) − A3,

A5 =
(k1 + m1)

(m1 − m2)
û1(0) − k3

(m1 − m2)
Ω̂2(0) + A3,

A6 = −u0
1y

(
m1 + k2

2m1 + k1 + k2

)
A1, A7 = −u0

1y

(
m2 + k2

2m2 + k1 + k2

)
A2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.12)

It is clear that the streamwise velocity would also decay as t → ∞, but, interestingly,
grows for short times due to the ‘under-braced’ term in (5.11) that is linear in time.
Note that this algebraic growth is driven by the forcing of û1(t) due to the transverse
velocity û2(t) and the mean shear u0

1y (see A6 and A7 in equation 5.12).
The solution to the transverse spin velocity is given by

Ω̂2(t) = A8e
m1t + A9e

m2t + (A10e
m1t + A11e

m2t )t︸ ︷︷ ︸, (5.13)

where

A8 =
(m1 + k1)

k3

[
u0

1y

(2m1 + k1 + k2)
A1 + A4

]
, A9 =

(m2 + k1)

k3

[
u0

1y

(2m2 + k1 + k2)
A2 + A5

]
,

A10 =
(k1 + m1)

k3

A6, A11 =
(k1 + m2)

k3

A7.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(5.14)

Similar to streamwise velocity, the transverse spin velocity is also subjected to transient
‘linear’ growth due to the ‘under-braced’ term in (5.13).
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To understand the origin of such short-time linear growth, we consider the inviscid
stability equations (i.e. with µ = 0 = µr ) whose solutions are

û1(t) = û1(0) + u0
1yû2(0)t, û2(t) = û2(0),

Ω̂1(t) = Ω̂1(0), Ω̂2(t) = Ω̂2(0).

}
(5.15)

Clearly, |û1(t)| → ∞ as t → ∞, and hence this is an algebraic instability (Ellingsen
& Palm 1975) which is inviscid in nature. Note that this ‘algebraic’ instability grows
linearly with time in contrast to the standard ‘exponential’ instability for which the
perturbations grow/decay exponentially with time as in (5.1).

Figure 1 shows a set of results on the temporal evolutions of û1(t) and Ω̂2(t) for the
parameter values of φ = 0.1 and e = 0.99, with the tangential restitution coefficient
being set to (a, b) β = −0.9, (c, d) β = 0 and (e, f ) β = 0.9. For all cases, the
initial condition corresponds to û2(t = 0) = 1, with null values for other fields at
t = 0. It is observed that there is a substantial growth of the streamwise velocity,
and the associated growth of the transverse spin velocity is smaller by about two
orders of magnitude compared to that for û1(t). The initial growth of û1(t) closely

follows the linear inviscid asymptote (5.15); the growth of Ω̂2(t) lags behind that of
û1(t) because the growth of the former is due to the growth of the latter. For both
cases, however, the initial growth is arrested after some time by the viscosities of the
granular fluid (µ0 and µ0

r ) that eventually stabilize the flow. The maximum growth of

û1(t) and Ω̂2(t) decreases sharply with increasing value of the spanwise wavenumber
kz since the viscous decay rate (∝ m1,2, see equation (5.7)) is proportional to k2

z . Note

that the peaks on the curves of û1(t) and Ω̂2(t) occur at a time that is few orders of
magnitude larger that the imposed shear rate. This time scale (which is proportional
to k−2

z and (µ0 + µ0
r )

−1), over which the above inviscid mechanism is active, decreases
with increasing inelasticity as well as with increasing kz.

It should be noted that even though the above time scale decreases with increasing
inelasticity, our prediction of inviscid algebraic instability and the related momentum
transfer mechanism (see below) hold for any value of inelasticity. This conclusion
remains valid irrespective of whether we are using a Navier–Stokes’-level or a Burnett-
level constitutive theory.

In physical terms, the above algebraic growth of û1(t) occurs owing to the transfer
of momentum from the transverse velocity û2(0) via the mean shear field (u0

1y), i.e.
û2(0) extracts momentum from the mean shear (u0

1y) and transfers it to û1(t). Note

that the transverse spin velocity Ω̂2(t) does not show any inviscid instability since it

is neutrally stable in the inviscid limit. In fact, the algebraic growth of Ω̂2(t) in (5.13)
is due to its coupling with û1(t) via the vortex viscosity (k4 ∝ µ0

r ). For this case, the
vortex viscosity helps to extract streamwise momentum from û1(t) and transfers it to

the rotational mode Ω̂2(t). Based on this discussion, we propose the following route

for the algebraic growth of û1(t) and Ω̂2(t) in a sheared micropolar granular fluid:

Non-zero û2(0)

⇓ via inviscid ‘algebraic’ instability

Momentum transfer to û1(t)

⇓ via ‘vortex’ viscosity

Momentum transfer to Ω̂2(t).
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Figure 1. Evolutions of û1(t) and Ω̂2(t) with time for φ =0.1 and e = 0.99: (a, b) β = −0.9;
(c, d) β = 0; (e, f ) β = 0.9. See text for other details.

Clearly, this is an ‘instability-driven’ momentum transfer mechanism from the
translational degrees of freedom to the rotational degrees of freedom. Since we are

driving the rotational field Ω̂2(t) by an inviscid algebraic instability of û1(t), this can
aptly be dubbed an instability-induced rotational-driving mechanism. Note that this is a
purely three-dimensional effect since kz �= 0, and has no analogue in two-dimensional
flows. One can control this momentum transfer mechanism by manipulating with
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û2(0), kz and the base-flow quantities (φ0, T 0, θ0, µ0 and µ0
r ). This should be exploited

in MD simulations for a better understanding of the underlying mechanism. Such
simulations may also shed light on an important issue of controlling/manipulating
the formation of instability-induced inhomogeneities in a sheared granular system by
designing specific perturbations.

It is worth pointing out that the recent works on the stability of incompressible
Newtonian fluids (Schmid & Henningson 2001, and references therein) have under-
scored the importance of ‘algebraic’ growth. There are many flow configurations (e.g.
the plane Couette flow, pipe flow, etc.) that are stable according to the linear stability
theory, but have been shown to have a finite critical Reynolds number in experiments.
For such ‘sub-critical’ shear flows, the algebraic growth of perturbations leads to
nonlinear states, in tune with experiments, via the ‘bypass-transition’ mechanism
(Schmid & Henningson 2001). The possibility of a similar transition-mechanism in
granular shear flows, that requires a nonlinear analysis, will be pursued in future.

5.1.1. Dispersion relation for φ̂, û3, T̂ and θ̂: long-wave scalings and ‘exponential’
instabilities

The equations for the density φ̂, spanwise velocity û3, translational temperature T̂

and rotational temperature θ̂ are coupled with each other, which lead to a fourth-order
dispersion relation in ω:

ω4 + a3ω
3 + a2ω

2 + a1ω + a0 = 0, (5.16)

with the coefficients ai having the following functional dependences with kz:

a3 = a30 + a32k
2
z , a2 = a20 + a22k

2
z + a24k

4
z ,

a1 = a12k
2
z + a14k

4
z + a16k

6
z , a0 = a02k

2
z + a04k

4
z + a06k

6
z .

}
(5.17)

The coefficients aij are real functions of e, β , K and the base-flow variables.
To determine the scalings of different modes with wavenumbers, we seek a long-

wave expansion for ω in kz,

ω = ω0 + ω1kz + ω2k
2
z + · · · .

The approximate solutions (with leading-order corrections) to all roots are

ω(1,2) = ωr ± iωi,

ω(3,4) = ω0 −
[
a02 + a12ω0 + a22ω

2
0 + a32ω

3
0

]
k2

z

ω0

[
4ω2

0 + 3a30ω0 + 2a20

] + O
(
k4

z

)
⎫⎪⎬⎪⎭ , (5.18)

where

ω0 =
−a30 ∓

√
a2

30 − 4a20

2
,

ωr =
−a12 + a30a02/a20

2a20

k2
z + O

(
k4

z

)
,

ω2
i = −a02

a20

k2
z + O

(
k4

z

)
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5.19)

To zeroth-order in kz, these roots are ω(1,2,3,4) = (0, 0, ω−
0 , ω+

0 ). Considering the smooth
particle limit (β → −1) we find that the real root ω(3) = ω−

0 degenerates to

ω(3) = lim
β→−1

a30 = − 2

3φ0
f 0

5 T 01/2 < 0,
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Exact values, (5.16) Approximate values, (5.18)

ω(1) −1.2182028 × 10−5 + i1.338817 × 10−3 −1.2181 × 10−5 + i1.33883 × 10−3

ω(2) −1.2182028 × 10−5 − i1.338817 × 10−3 −1.2181 × 10−5 − i1.33883 × 10−3

ω(3) −4.853731728 × 10−1 −4.85373173 × 10−1

ω(4) −2.71335954155 × 10−1 −2.71335954157 × 10−1

Table 1. Comparison of approximate eigenvalues (5.18) with exact ones (5.16) for pure
spanwise disturbances (kx = ky = 0): φ = 0.2, e = 0.9, β = −0.9, kz = 0.001.

Exact values, (5.16) Approximate values, (5.18)

ω(1) 4.4558787633 × 10−3 4.4525 × 10−3

ω(2) −1.604556702 × 10−1 −1.60455671 × 10−1

ω(3) −4.717291215 × 10−1 −4.713 × 10−1

ω(4) −2.867957579 × 10−1 −2.86796 × 10−1

Table 2. Comparison of approximate eigenvalues (5.18) with exact ones (5.16) for pure
spanwise disturbances (kx = ky = 0): φ = 0.05, e = 0.9, β = −0.9, kz = 0.001.

which belongs to the decaying translational temperature mode, and the other real
root ω(4) = ω+

0 to the rotational temperature; the complex conjugate pair belongs to
density and spanwise velocity. Out of these four modes, the translational temperature
is a fast mode since it decays faster than the rest.

The approximate values of ω(i) are compared with their exact values (5.16) in table 1;
parameters are set to φ = 0.2, e = 0.9, β = −0.9, kz = 0.001. The two real roots, along
with the real parts of the two propagating modes, are negative. Decreasing the solid
fraction to φ = 0.05, we find that all four roots are real, as seen in table 2, with one
of them being positive and hence unstable. In fact, the origin of this unstable mode
can be traced to the complex conjugate pair (ω(1) and ω(2)): the propagating modes
merge together at a critical solid fraction to give birth to two stationary modes, one
of which is unstable. Hence, the pure spanwise instability is stationary in nature as
is the case for smooth particles (Wang et al. 1996); the inclusion of the rotational
motion does not change the scaling of the unstable mode with kz. (The details of the
effects of rotational fields on the modal structure are omitted for the sake of brevity,
but see the stability diagrams.)

Figure 2 shows four phase diagrams, delineating the zones of instability and stability,
in the (φ, kz)-plane for different values of the tangential restitution coefficient (a)
β = −1, (b) −0.9, (c) 0 and (d) 1; the normal restitution coefficient is set to e = 0.9. In
each panel, we have plotted the contours of the growth rate of the least stable mode,

ωl
r = max ωr.

The flow is unstable inside the neutral stability contour (denoted by ‘0’) and stable
outside. For a given solid fraction (within the instability zone), the growth-rate of the
least stable mode is zero at kz = 0, increases with increasing kz, reaches a maximum
at some value of kz and decreases monotonically thereafter. Compared to the case of
smooth particles (β = −1) in figure 2(a), the size of the instability zone is maximum
for β = 0 and minimum for β = 1 (see ordinates in figures 2b, 2c and 2d).

Figure 3 shows the same set of phase diagrams for the ideal case of rough particles
with elastic collisions (i.e. e =1 and β �= −1). In the limit of perfectly smooth elastic
particles (β = −1 and e = 1), the pure spanwise instability vanishes. Making the
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Figure 2. Stability maps in the (φ, kz)-plane, showing the growth rate contours of the
least stable eigenvalue, ωl

r , for pure spanwise perturbations with inelastic particles e = 0.9:
(a) β = −1.0; (b) β = −0.9; (c) β =0; (d) β =1.0.

particles slightly rough (β = −0.9999), this instability again appears in the (φ, kz)-
plane as observed in figure 3(a). As in the case of e = 0.9, the size of the instability
zone is maximum for β = 0 (figure 3c). In figure 3(d), we have set β = 0.9999 for
which the instability zone is very small and eventually shrinks to zero for perfectly
rough particles (β = 1). Therefore, the pure spanwise instability survives even in the
limit of perfectly elastic particles if β �= −1 and 1.

The stationary nature (ωi = 0) of the pure spanwise instability helps to determine
the locus of the neutral stability contour (ωr = 0) analytically by setting ω = 0 in the
dispersion relation (5.16), i.e. a0 = 0, which is given by

k2
z =

−a04 +
√

a2
04 − 4a06a02

2a06

. (5.20)

The critical solid fraction, φ ≡ φs
c , at which this instability sets in can be obtained by

setting kz = 0 in (5.20), and the maximum range of unstable spanwise wavenumber,
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Figure 3. Same as in figure 2, but for particles with perfectly elastic collisions e = 1.0:
(a) β = −0.9999; (b) β = −0.9; (c) β = 0; (d) β = 0.9999.

kmax
z , for this instability can be obtained by setting dkz/dφ = 0 in (5.20) (see figures 2

and 3).
The variations of the maximum growth rate of the spanwise unstable mode

(maximized over all kz and φ, see figures 2 and 3)

ωmax
r = sup

kz,φ

ωl
r ,

the maximum unstable spanwise wavenumber kmax
z and the critical solid fraction φs

c

with the tangential restitution coefficient β are shown in figures 4(a), 4(b) and 4(c),
respectively, for e = 1.0, 0.9 and 0.7. For the perfect elastic case (e = 1), both ωmax

r

and kmax
z are zero for β = −1 and 1, and hence the flow is stable in these two limits.

(The curves for e = 0.999 are indistinguishable from those for e = 1.) It is observed
from figures 4(a) and 4(b) that the peaks in the curves of ωmax

r and kmax
z are located at

β > 0 for e = 1, which shift to lower values of β as we decrease the normal restitution
coefficient. From figure 4(c), we find that the critical solid fraction, φs

c , for spanwise
instability decreases monotonically with increasing β for a given e; its value increases
monotonically with decreasing e for any β . The dependence of ωmax

r on the choice
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Figure 4. Variations of (a) ωmax
r , (b) kmax

z and (c) φs
c for pure spanwise perturbations with β

for different e. (d) Same as (a), but for a different radial distribution function (2.26).

of the radial distribution function is shown in figure 4(d) for (2.26). The maximum
growth rate (as well as kmax

z , not shown) is slightly larger for (2.26) in comparison
with that for the Carnahan–Starling form (2.25); however, the critical solid fraction,
φs

c , is slightly smaller (not shown) for (2.26).

5.2. Pure transverse perturbations: long-wave scalings and ‘exponential’ instabilities

Perturbations having variations only in the transverse direction (i.e. ky �= 0, with
kx = 0 = kz, i.e. the wave-vectors are aligned along the y-direction) are called pure
transverse perturbations. For this case, the equations for û3, Ω̂1 and Ω̂2 are decoupled
from the six rest equations, with solutions

û3(t)=B1 exp(m3t) + B2 exp(m4t),

Ω̂1(t)=B3 exp(m3t) +B4 exp(m4t) + B5 exp
(
−2ckµ

0
r t

)
, Ω̂2(t) = Ω2(0) exp

(
−2ckµ

0
r t

)
,

}
(5.21)

where B1–B5 are constants of integration whose explicit expressions are not shown
for brevity. The exponents are given by

m3,4 =
k5 + k8

2
± 1

2

√
(k5 + k8)2 + 4(k6k7 − k5k8), (5.22)
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where

k5 = −cd

(
µ0 + µ0

r

)
k2

y, k6 = −2icpky, k7 = ickµ
0
r ky, k8 = −2ckµ

0
r .

Since Re{m3,4} < 0, all three modes decay with time, and hence are stable. For the
six rest equations, the analysis boils down to that for pure transverse disturbances in
two-dimensional flows. (For two-dimensional flows, there are two linear momentum

equations for û1 and û2 and one angular momentum equation for Ω̂3, and hence we
are left with six balance equations.) Seeking ‘exponential’ solutions for perturbation
variables (∼eωt ), the dispersion relation can be obtained as:

ω6 + b5ω
5 + b4ω

4 + b3ω
3 + b2ω

2 + b1ω + b0 = 0, (5.23)

with the coefficients bi having the following functional dependence with ky:

b5 = b50 + b52k
2
y, b4 = b40 + b42k

2
y + b44k

4
y,

b3 = b30 + b32k
2
y + b34k

4
y + b36k

6
y, b2 = b22k

2
y + b24k

4
y + b26k

6
y + b28k

8
y,

b1 = b12k
2
y + b14k

4
y + b16k

6
y + b18k

8
y, b0 = b04k

4
y + b06k

6
y + b08k

8
y.

⎫⎪⎬⎪⎭ (5.24)

The coefficients bij are real functions of e, β , K and the base-state variables.
Seeking a long-wave approximation for ω in ky , we find that, to zeroth-order in

ky , there are three zero roots (ω(1)
0 = 0 = ω

(2)
0 = ω

(3)
0 ), and the other three roots are the

solution of the following cubic polynomial:

ω3
0 + b50ω

2
0 + b40ω0 + b30 = 0. (5.25)

At this order, the smooth particle limit (β → −1) yields ω
(4,5,6)
0 = (ωs0, 0, 0), with

ωs0 = lim
β→−1

−b30 = − 2

3φ0
f 0

5 T 01/2 < 0 (5.26)

that corresponds to the decay-rate of the translational temperature; the other two

roots, ω
(5,6)
0 , belong to Ω̂3 and θ̂ . As in the case of pure spanwise perturbations, the

translational temperature remains the fast mode for pure transverse perturbations at
this order.

With leading-order corrections in ky , the approximations to all six roots are given
by

ω(1) = −b04

b12

k2
y + O

(
k4

y

)
,

ω(2,3) = ωr ± iωi,

ω(4,5,6) = ω0 − b12 + b22ω0 + b32ω
2
0 + b42ω

3
0 + b52ω

4
0

ω0

(
3b30 + 4b40ω0 + 5b50ω

2
0 + 6ω3

0

) k2
y + O

(
k4

y

)
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.27)

where the real and imaginary parts of ω(2,3) are:

ωr =

b04 + b40

b2
12

b2
30

− b12

b22

b30

2b12

k2
y + O

(
k4

y

)
,

ω2
i =

b12

b30

k2
y + O

(
k4

y

)
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5.28)
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Figure 5. Same as in figure 3, but for pure transverse perturbations with e = 1.0.

Note that the leading-order corrections to two rotational modes vary quadratically
with ky , and they represent ‘diffusive’ modes and are stable. Comparisons of these
approximate eigenvalues with their exact values (5.23) for different combinations of
φ, e and β show excellent agreement for ky � 0.01. In contrast to pure spanwise
perturbations, the propagating modes for transverse perturbations remain stable
for all φ, and the instability arises from one of the real roots, ω(1), as in the
case of smooth particles (Alam & Nott 1997, 1998), and hence is stationary in
nature.

Figure 5 displays four phase diagrams in the (φ, ky)-plane for a normal restitution
coefficient of e = 1.0; the flow is unstable to pure transverse perturbations inside
the neutral contour. It is observed that the pure transverse instability survives in the
perfect elastic limit of rough particles, except for two extreme limits of β = −1 and
1. Increasing the value of β from −0.9999 (figure 5a) to −0.9 (figure 5b) increases
the size of the unstable zone, but decreases beyond β = 0 (figure 5c). For a given
roughness β , decreasing the value of e increases the size of the instability zone (not
shown) as well as the growth rate of the least stable mode. Comparing figure 5 with
figure 3, we find that the growth rate of the least stable mode is about two orders
of magnitude smaller for pure transverse perturbations than that for pure spanwise
perturbations.
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β for different e. (d) Same as (a), but for a different radial distribution function (2.26).

In a phase diagram such as figure 5(a), the locus of the neutral contour (ωr = 0)
can be analytically determined from

k2
y =

−b06 +
√

b2
06 − 4b08b04

2b08

. (5.29)

The critical solid fraction, φt
c, for the onset of transverse instability is obtained from

(5.29) by setting ky = 0, and the maximum range of unstable transverse wavenumber,
kmax

y , for this instability can be obtained by setting dky/dφ = 0 in (5.29). The variations
of the maximum growth rate of the transverse unstable mode (maximized over all ky

and φ, see figure 5)

ωmax
r = sup

ky ,φ

ωl
r ,

the maximum unstable transverse wavenumber kmax
y and the critical solid fraction φt

c

with β are shown in figures 6(a), 6(b) and 6(c), respectively. It is observed from fig-
ures 6(a) and 6(b) that the peaks in the curves of ωmax

r and kmax
y are located at β > 0

for e = 1, which shift to lower values of β as we decrease the value of e. The critical
solid fraction, φt

c, for transverse instability decreases monotonically with increasing
β for a given e as seen in figure 6(c), however, it does not vary much with e. The
dependence of ωmax

r on the choice of the radial distribution function is shown in
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Figure 7. Stability maps in the (kz, ky)-plane, showing the growth rate contours of the least
stable eigenvlaue, ωl

r , for streamwise-independent perturbations with e =0.9 and β = −0.9:
(a) φ = 0.05; (b) φ = 0.35.

figure 6(d) for (2.26). The maximum growth rate (as well as kmax
y , not shown) is

slightly smaller for (2.26) in comparison with that for (2.25).
Comparing figure 6(c) with figure 4(c), we find that for smooth particles (β = −1)

there is a window of solid fractions, φs
c <φ <φt

c, for which the flow is stable to
both spanwise and transverse instabilities; the size of this window diminishes with
increasing β , and at e = 0.7 the flow becomes unstable for all solid fractions if β > 0.5.
(In fact, both spanwise and transverse instabilities coexist for a narrow window
of solid fractions at e =0.7 and β > 0.5, and the size of this window grows with
decreasing e.)

5.3. Perturbations with ky �= 0 and kz �= 0

For the general case of streamwise-independent perturbations (kx = 0), having
modulations in both the transverse and spanwise directions (ky �= 0 and kz �= 0), the
dispersion relation is a ninth-order polynomial that has been solved numerically.

Figure 7 shows two phase diagrams in the (kz, ky)-plane for solid fractions of
φ = 0.05 and 0.35; the restitution coefficients are set to e = 0.9 and β = −0.9. For
both cases, the instabilities are stationary in nature, and their origin for dilute flows
(φ = 0.05 � φs

c ) can be traced back to the pure spanwise instability (kz �= 0) as discussed
in § 5.1.1, and that for moderate-to-dense flows (φ =0.35 � φt

c) to the pure transverse
instability (ky �= 0) as discussed in § 5.2. The flow is unstable to non-zero values of ky

at long waves (figure 7a); in particular, the growth rate of the least stable mode is
maximum at ky = 0, and decreases monotonically with increasing ky . For dense flows
as in figure 7(b), the growth rate of the least stable mode is maximum at kz = 0, and
decreases monotonically with increasing kz. For other values of β , the phase diagrams
look similar to those in figure 7: the ranges of unstable ky and kz as well as the growth
rate of the least stable mode reach maxima for intermediate values of β (> 0).

We had noted in § § 5.1.1 and 5.2 that at large dissipations and β > 0.5, there is a
range of solid fractions (around φ ∼ 0.15) for which both pure spanwise and pure
transverse instabilities coexist; the maximum growth rate occurs at non-zero values
of kz for any ky within this range of solid fractions. Therefore, we conclude that, for
all values of β , the two-dimensional (kz = 0) streamwise-independent perturbations
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are more unstable than their three-dimensional counterparts if the solid fraction is
larger than its critical value for pure spanwise instability (i.e. for φ > φs

c ), while for
φ < φs

c the three-dimensional perturbations are the most unstable.
Lastly, a comment on the dependence of the observed instabilities on the system

size is in order. The results presented in figures 2–7 suggest that the uniform shear
flow is unstable if the wavenumber (which is inversely proportional to the system
size) is small enough for a given β . This implies that these instabilities can be detected
if the system size is large enough as is the case in MD simulations of shear flows
(Hopkins, Louge & Jenkins 1993; Tan & Goldhirsch 1997). The effect of tangential
restitution coefficient β on the ‘critical’ system size shows an interesting trend as
can be ascertained from figures 4(b) and 6(b). It is observed that there is a critical
βc ∼ 0 above/below which the critical system-size for the onset of these instabilities
increases. Similar dependence on β holds for the instability growth rate as can be
seen in figures 4(a) and 6(a). In summary, the maximum growth rate (ωmax

r ) increases
and the critical system size (∝ k−1) for the instability-onset decreases if we make the
particles slightly rough from the ‘perfectly’ smooth limit (β = −1) or slightly smoother
from the ‘perfectly’ rough limit (β =1).

6. General perturbations (kx, ky, kz �=0)
6.1. Long-time behaviour (t → ∞)

Here we consider general perturbations having variations in all three directions, i.e.
for which

kx, ky, kz �= 0,

and analyse the temporal behaviour of X̂(t) in equation (4.7). Since the linear
stability/instability corresponds to the asymptotic behaviour of the solutions of (4.7)
in the limit of large time (t → ∞), here we carry out an asymptotic analysis in the
long-time limit. For large times (t � 0), the matrix A(t) in (4.7) can be approximated
by its coefficient which is quadratic in time: A(t) ≈ A2t

2, provided A2 has full rank.
However, since A2 is rank-deficient, one has to be careful in determining the large-
time behaviour of X̂(t). In this regard, we note that the earlier work of Schmid &
Kytömaa (1994) was corrected in Alam & Nott (1997; personal communication, P. R.
Nott 1996). We follow the above work to determine the large-time behaviour of X̂(t)
by using the method of dominant balance (Bender & Orszag 1999).

The correct balance in the perturbation equations for the translational and
rotational temperatures is between the time-derivative on the left-hand side and the
corresponding quadratic term (∝ t2) on the right-hand side. These two equations are
coupled with each other and can be manipulated to yield two decoupled second-order

differential equations for T̂ (t) and θ̂ (t):

d2T̂

dt2
+

[
cd

(
κ0 + κ0

rh

)
k2

xt
2 − 2

t

]
dT̂

dt
−

[
cd

(
κ0

r κ
0
h − κ0κ0

rh

)
k2

x

]
t4T̂ = 0,

d2θ̂

dt2
+

[
cd

(
κ0 + κ0

rh

)
k2

xt
2 − 2

t

]
dθ̂

dt
−

[
cd

(
κ0

r κ
0
h − κ0κ0

rh

)
k2

x

]
t4θ̂ = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.1)

Using the following transformation for the independent variable:

τ = t3,
d

dt
= 3t2 d

dτ
,

d2

dt2
= 9t4 d2

dτ 2
+

2

t

d

dt
, (6.2)
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the variable-coefficient equations (6.1) readily simplify to ‘constant-coefficient’
equations:

9
d2T̂

dτ 2
+ 3

[
cd

(
κ0 + κ0

rh

)
k2

x

]dT̂

dτ
+

[
cd

(
κ0κ0

rh − κ0
r κ

0
h

)
k2

x

]
T̂ =0,

9
d2θ̂

dτ 2
+ 3

[
cd

(
κ0 + κ0

rh

)
k2

x

]dθ̂

dτ
+

[
cd

(
κ0κ0

rh − κ0
r κ

0
h

)
k2

x

]
θ̂ =0.

⎫⎪⎪⎬⎪⎪⎭ (6.3)

The solutions for T (t) and θ(t) can be written in a compact form:

T̂ (t)

T̂ (0)
=

θ̂ (t)

θ̂ (0)
=

1

(m5 − m6)
[m5 exp(m5t

3) − m6 exp(m6t
3)], (6.4)

where the exponents m5 and m6 are given by

m5,6 =
cd

6

(
κ0 + κ0

rh

)[
− 1 ±

√√√√1 −
4
(
κ0κ0

rh − κ0
r κ

0
h

)
cd

(
κ0 + κ0

rh

)2
k2

x

]
k2

x. (6.5)

It is clear that the growth/decay rates of both T (t) and θ(t) are the same.
From (6.5), we find that the exponent m6 (or its real part) is always negative,

and the instability is possible only if the other exponent m5 is positive. Thus, for
instability to occur, the term within the square root in (6.5) must be greater than one.
This instability criterion simplifies to

F(φ, e, β) =
(
κ0κ0

rh − κ0
r κ

0
h

)
< 0. (6.6)

Considering the limit of nearly smooth particles (i.e. β ≈ −1), it can be verified that

κ0κ0
rh = O(1 + β), κ0

r κ
0
h = O((1 + β)2),

and hence F(φ, e, β) = O(1 + β) > 0. The positivity of F has been verified numerically
(not shown for brevity) for the whole range of β and other control parameters.
Therefore, the exponent m5 is negative for all parameter combinations. This implies
that both the translational and rotational temperatures decay to zero as t → ∞,
representing stable modes.

It can be verified a posteriori that the dominant balance in the perturbation

equations for û1, û2, û3, Ω̂1, Ω̂2 and Ω̂3 is among the terms on the right-hand side of
each equation; for example, the dominant balance for the û1-momentum equation is:

c1φ̂ + c2û1 + c3û2 + c4û3 + c6Ω̂2 + c7Ω̂3 = 0,

and that for the Ω̂1-momentum equation is

d3û2 + d4û3 + d5Ω̂1 = 0,

where functional forms of ci and di can be obtained from Appendix C. (Note that

the terms associated with T̂ and θ̂ are neglected in the dominant balance for the
û1-momentum equation since they are much smaller in magnitude (at large times)

than those retained.) All these equations can be solved for û1, û2, û3, Ω̂1, Ω̂2 and Ω̂3 in

terms of φ̂. Substituting the resulting expressions of û1, û2 and û3 in the perturbation

mass balance equation, the asymptotic expression for φ̂ at large times can be derived
as:

φ̂(t) ∼ exp(−Cφt) with Cφ =
φ0p0

T

(2µ0 + λ0)
> 0, (6.7)
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which decays as t → ∞. The resulting leading-order expressions for the translational
and rotational velocities are given by:

[û1(t), û2(t), û3(t), Ω̂1(t), Ω̂2(t), Ω̂3(t)] ∼ [t−1, t−1, t−2, t−1, t−1, t0] exp(−Cφt), (6.8)

which also decay as t → ∞.
From the above analysis, we conclude that the unbounded granular shear flow of

rough particles remains linearly stable to general perturbations with kx, ky, kz �= 0.
This conclusion mirrors the previous work on the shear flow (Alam & Nott 1997) of
perfectly smooth particles (β = −1).

6.2. Short-time behaviour: initial growth rates

In the short-time limit (t ∼ 0), the stability matrix A(t) in (4.7) can be approximated
by a constant matrix,

A(t) ≈ A0,

which allows standard ‘exponential’ solutions in time, leading to an eigenvalue problem

|A0 − ωI | = 0.

It should be noted, however, that the growth rates obtained from such an analysis
do not tell us anything about the long-time dynamics, but are estimates of the initial
growth rates (Savage 1992; Babic 1993) of different modes (which would eventually
decay as t → ∞ as shown by the analysis in the above section). In this section, we
use the term ‘instability’ to refer to modes having positive ‘initial’ growth rates.

Figures 8(a)–8(c) show three phase diagrams, delineating the zones of positive
and negative initial growth rates, in the (kz, ky)-plane for tangential restitution
coefficients of β = −0.9, 0 and 1, respectively, with φ = 0.05 and e =0.9; the streamwise
wavenumber is set to kx = 0.01. It is observed that the flow supports positive growth
rates for a large range of ky and kz for all β; as in the case of pure spanwise and
transverse instabilities, the size of the instability zone (for initial growth rates) is
maximum for intermediate values of β . The kinks on the growth-rate contours in
figures 8(a)–8(c) are a consequence of ‘mode-crossings’ which is evidenced in figure
8(d) where we have plotted the contours of ωi (frequency) in the (kz, ky)-plane for
the parameter set of figure 8(a); for a comparison, the corresponding neutral stability
contour (denoted by a thick line) is also superimposed. It is clear from this figure that
the phase diagram for β = −0.9 is composed of three different modes: the one for
positive ky and small kz belongs to travelling waves (TW) as well as the small-lobe
around (kz, ky) = (0.07, −0.04), and the rest of the instability zone to stationary waves
(SW). Increasing the tangential restitution coefficient to β = 0, one of the TW-lobes
(for negative ky) disappears from the (kz, ky)-plane, but reappears with further increase
in β (see figure 8c).

In figure 8, the dominant TW/SW-mode (the one having the maximum initial
growth rate for all ky and kz) comes from kz =0 modes for all values of β . Therefore,
the two-dimensional perturbations are more unstable than their three-dimensional
counterparts for all β with kx �= 0. The wavevector corresponding to the dominant
TW mode ‘opposes’ the mean shear, but that for the dominant SW mode is along the
mean shear.

Figure 9(a) shows a phase diagram for a moderately dense flow (φ = 0.35), with
other parameters as in figure 8(a). (The phase diagrams for φ = 0.2 and φ = 0.5 look
similar to that for φ = 0.35.) Looking at the frequency-contours of the least stable
mode in figure 9(b), we find that there are two instability-lobes for TW, and one for
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perturbations (kx �= 0, but ky = 0 = kz) with e = 1.0: (a) β = −0.9999; (b) β = −0.9; (c) β =0;
(d) β = 0.9999. SW and TW refer to stationary and travelling waves, respectively.

SW. As in the case of dilute flows (figure 8), the dominant instability comes
from kz =0 modes, that holds for higher values of solid fraction too. In contrast
to dilute flows, however, the dominant travelling-wave instability for dense flows
appears for negative ky and the dominant stationary instability for positive ky .
Consequently, the orientations of the density patterns for dominant TW and SW
modes are reversed for dense flows (compared to those in figure 8 for dilute flows).

All the above results correspond to a low streamwise wavenumber, kx =0.01.
Increasing its value to kx = 0.1 (with other parameters fixed), the growth rate of the
least-stable mode as well as the size of the unstable zone increases; however, the
travelling waves disappear too, making the stationary waves the least stable modes.
With further increase in kx (to 0.25, say), the flow becomes stable for all ky and kz.

Lastly, we show a set of phase diagrams in figure 10 for pure streamwise
perturbations (kx �= 0, with ky = 0 = kz) for which the wavevectors are aligned along
the streamwise direction at t = 0. The normal restitution coefficient is set to e = 1.0,
and the tangential restitution coefficients are (a) −0.9999, (b) −0.9, (c) 0 and (d)
0.9999. The flow supports large initial growth rates (and hence unstable, in the above
sense) for the whole range of solid fractions for all β except in two limits β → −1
and β → 1. The instability lobe for dilute flows belongs to stationary waves, but the
other one for dense flows to travelling waves. These instabilities become stronger (i.e.
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for different e. (b) Same as in (a), but for both the first (SW) and the second (TW) instability
lobes in figure 10 for e = 0.9.

the growth rate increases) with increasing dissipation levels (∼ (1 − e2)) for a given
value of β , as evidenced in figure 11(a) which displays the variations of the maximum
growth rate,

ωmax
r = sup

φ,kx

ωl
r ,

with β for three values of e. The dominant instability comes from stationary waves
(that correspond to the left instability lobe in figure 10), and that the maximum
growth rate for travelling waves remains smaller (by about a factor of two) in
comparison with that for stationary waves at any value of β (figure 11b). Since
for pure streamwise modes (at t =0), the transverse wavenumber is ky(t) = −kxt , the
vertical density bands will degenerate into horizontal bands as t → ∞ (as in the
pure transverse instability). Note that the growth rates of these streamwise modes
are about two orders of magnitude larger than their pure transverse counterparts in
§ 5.2 (compare TW instability lobes in figures 10b and 10c with figures 5b and 5d ,
respectively). It is possible that the pure transverse instability (which is stationary) is a
consequence of the time-evolution of the pure streamwise ‘initial’ instabilities (which
are travelling waves), via the loss of hyperbolicity of the underlying field equations of
perturbation variables – it would be interesting to establish this elusive connection.

Strictly speaking, the above ‘exponential’ growth of perturbations due to ‘initial’
growth rates is meaningful if the perturbation-amplitude grows to a sufficiently
large value within the time scales of the mean flow such that the nonlinearities in
the governing equations can take over to trigger a transition to some new state.
(The above comment also holds for the growth of perturbations owing to the inviscid
algebraic instability as described in § 5.1.) Since the perturbation time scale is inversely
proportional to its growth rate (∝ 1/ωr ), one should closely look at the effect of β

on the instability growth rate. It is clear from figure 11(a) that the perturbation time
scale for β = −1 differs from that for β > − 1 by a factor of 10 or more in the
quasi-elastic limit e ∼ 1, and this factor decreases to about 2 at e = 0.9. Hence, the
transient ‘exponential’ growths are likely to play an important role on the dynamics
of rough particles in the quasi-elastic limit.
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7. Discussion
7.1. Possible effects of Coulomb friction

To understand the effects of an small amount of Coulomb friction on the stability char-
acteristics of shear flow, we consider the simplified kinetic theory model of Jenkins &
Zhang (2002) who suggested an effective coefficient of normal restitution, in terms of
the coefficient of friction µf ,

eeff ≈ e − 1
2
πµf + 4.5µ2

f , (7.1)

to account for the additional mechanism of dissipation associated with Coulomb
friction. These authors have suggested that we can get dispense with the separate
balance equations for the spin fields, and simply solve for the balance equations of
smooth particles by incorporating eeff into the dissipation term of the translational
energy balance equation. With this modification of e in the reduced set of balance
equations, we found that the growth rate of the least stable mode increases with
increasing µf . However, it is not clear how to recover the non-monotonic dependence
of the time and length scales for both spanwise and transverse instabilities on β from
such a simplified model. More importantly, this reduced model will miss the algebraic
instability-induced momentum transfer mechanism between the translational and the
rotational degrees of freedom that we had discussed in § 5.1. Therefore, the full set
of balance equations must be used to recover the correct features of the observed
instabilities in shear flow.

7.2. Range of validity of Lun’s theory and the higher-order effects

Here we discuss the validity of Lun’s constitutive model (1991) for a micropolar
granular fluid with respect to the full range of tangential restitution coefficient
β ∈ (−1, 1) as well as the robustness of our reported results. Note that Lun does not
use a formal Chapman–Enskog expansion, but uses the moment method (which is
akin to the Ritz–Galerkin integral method) to obtain the correction to the equilibrium
distribution function: f = f 0(1 + ψ). In the moment method, one chooses a suitable
form for the equilibrium distribution function f 0; an appropriate trial function for
the correction ψ is then assumed with unknown coefficients that are obtained by
satisfying the corresponding higher-order moment equations, and the resulting trial
function represents the best possible linear solution. The ‘equilibrium’ single particle
distribution function is taken as:

f 0(xp, c, ω; t) =
n

(2πT )3/2(2πmθ/I)3/2
exp

(
− (c − u)2

2T

)
exp

(
−I(ω − Ω)2

2mθ

)
(7.2)

that allows unequal translational and rotational temperatures at equilibrium, leading
to a two-temperature theory. Consequently, Lun’s model recovers correct results at
both the perfectly rough (β = 1, Theodosopulu & Dahler 1974) and perfectly smooth
(β = −1, Lun et al. 1984 ) limits.

An important issue is whether we can use Lun’s model for the whole range of
β ∈ (−1, 1). He obtained a solution for the correction to the equilibrium distribution
function, ψ , with the only constraint that the energy dissipation is low (i.e. e ≈ 1)
such that the following term remains small:

Rt =
σ

〈C2〉1/2

(
du1

dy

)
. (7.3)

Indeed this term remains small as long as we restrict ourselves to the quasi-elastic
limit e ≈ 1 for the range of β ∈ (−1, −0.8) and β ∈ (0.8, 1). This term increases by
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about 5 % (at a volume fraction φ = 0.1) and by 20 % (at a volume fraction φ = 0.5)
if we increase β from −1 to 0 at a normal restitution coefficient of e = 0.8. Hence,
this theory is accurate in the quasi-elastic limit for the whole range of β ∈ (−1, 1).
Since our results on instabilities hold at any value of e (irrespective of the value of
β), they are valid for any β ∈ (−1, 1).

The above comments on Lun’s model are restricted to the Navier–Stokes level of
approximation (i.e. first-order in moments as in the moment method, or, equivalently,
first-order in the shear rate as in the Chapman–Enskog expansion). To go beyond
the quasi-elastic limit, however, we should derive constitutive expressions at the
Burnett and super-Burnett levels. For smooth granular particles, such higher-order
constitutive models are now available (Sela & Goldhirsch 1998; Chou & Richman
1999; Santos, Garzo & Dufty 2004). One important ingredient of these Burnett-level
theories is ‘measurable’ normal stress differences (Goldhirsch & Sela 1996; Alam &
Luding 2003a, b) that require a separate balance equation for the stress deviator.
Moving onto the micropolar description of a granular fluid, we recall that the couple
stress appears at the Burnett-level which is known to play an important role near
the boundaries (Campbell 1993; Mitarai et al. 2002; Goldhirsh et al. 2005). We
are not aware of any Burnett-order constitutive model for a micropolar granular
fluid.

8. Summary and conclusions
We have investigated the linear stability characteristics of an unbounded shear

flow of rough granular particles, based on the ‘micropolar’ constitutive model of Lun
(1991). This kinetic-theory-based constitutive model is based on a simple collision
model with two material parameters: the normal coefficient of restitution, 0 � e � 1,
and the tangential coefficient of restitution, −1 � β � 1. The limit β = −1 corresponds
to perfectly smooth particles, β = 1 to perfectly rough particles, and β > 0 represents
the case of ‘spin-reversal’. For a micropolar continuum, the rotational degrees of
freedom give rise to additional balance equations for the angular momentum and the
spin granular energy that yield four new hydrodynamic modes in the linear stability
analysis which has been carried out using the Kelvin mode decomposition. The base
state of the unbounded shear flow is characterized by a linear streamwise velocity
profile (u = (ux, uy, uz) ≡ (u1, u2, u3) = (γ̇ y, 0, 0), where x, y and z are the streamwise,
transverse and spanwise directions, respectively, and γ̇ is the shear rate), with constant
values of solid fraction (φ), spanwise spin velocity, and translational and spin granular
temperatures.

For pure spanwise perturbations (kz �= 0, but kx =0= ky , where ki is the wavenumber
in the ith direction), we have found that there is an inviscid algebraic instability for the
perturbation streamwise velocity û1(t) that is driven by the perturbation transverse
velocity û2(0), via the mean shear field (u0

1y), such that |û1(t)| → ∞ as t → ∞ in
the inviscid limit (see equations (5.11) and (5.15)). More specifically, û2(0) extracts
momentum from the mean shear and transfers it to û1(t), leading to this algebraic
growth. We have also found that there is algebraic growth of the perturbation

transverse spin velocity Ω̂2(t) (see equation (5.13)) which is driven by the coupling of

Ω̂2(t) with û1(t) via the vortex viscosity µr . More specifically, the vortex viscosity helps
to extract streamwise momentum from û1(t) and transfers it to the rotational mode

Ω̂2(t). This important finding helped us to pinpoint an instability-induced momentum
transfer mechanism from the translational degrees of freedom to their rotational
counterparts – this is dubbed ‘instability-induced rotational-driving’ mechanism. It
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would be possible to control this mechanism by manipulating with û2(0), kz and the
base-flow quantities (φ0, T 0, θ0, µ0 and µ0

r ), and can also be tested in MD simulations
in order to understand the underlying mechanism better.

The above inviscid ‘algebraic’ instability does not lead to absolute instability for

û1(t) since the viscosity takes over at large times, and û1(t) (along with û2(t), Ω̂1(t),

Ω̂2(t) and Ω̂3(t)) decays in the long-time limit (t → ∞) for pure spanwise perturbations.

The other four modes (φ̂, û3, T̂ and θ̂) lead to a fourth-order dispersion relation,
resulting in an ‘exponential’ instability for dilute flows (below a critical solid fraction

φs
c ) which is stationary in nature. The spin temperature θ̂ (t) is shown to be a decaying

mode, and hence the resulting instability originates from that for perfectly smooth
(β = −1) inelastic (e �= 1) particles. This instability survives even in the limit of
perfectly elastic (e = 1) but rough (β �= −1, 1) particles. With inelastic particles, the
effect of the spin fields is to modify the growth rate of this instability (that scales
linearly with the spanwise wavenumber in the long-wave limit, i.e. ωl

r ∼ kz), its length
scale (k−1

z ) and the corresponding critical solid fraction. In particular, the global
maximum growth rate of this instability (maximized over all kz and φ), ωmax

r , varies
non-monotonically with roughness β , with its value being maximum for intermediate
values of β ( > 0). The global maximum of the unstable spanwise wavenumber, kmax

z ,
has a similar non-monotonic dependence on β , but the critical solid fraction φs

c

decreases monotonically with increasing β .
For pure transverse perturbations (ky �=0, but kx = 0 = kz), the perturbation fields

û3(t), Ω̂1(t) and Ω̂2(t) are shown to decay with time, and the rest of the stability
equations lead to a sixth-order dispersion relation. From a long-wave analysis, we have

found that the eigenvalues corresponding to Ω̂2(t) and θ̂(t) represent decaying modes,
and hence the origin of pure transverse instability is the same as that for smooth but
inelastic particles; the growth rate of this stationary instability scales quadratically
with the transverse wavenumber (i.e. ωl

r ∼ k2
y) in the long-wave limit. This instability

also survives in the perfectly elastic limit (e = 1) of rough particles (β �= −1, 1). The
global maximum growth rate of this transverse instability, ωmax

r , (maximized over
all φ and ky) and the global maximum unstable transverse wavenumber, kmax

y , vary
non-monotonically with roughness β , with their maxima being located at β > 0; the
critical solid fraction φt

c decreases monotonically with increasing β .
In the perfectly smooth limit (β → −1), there is a window of solid fractions,

φs
c < φ < φt

c, for which the flow remains stable to all perturbations. However, with the
inclusion of spin fields, the size of this window decreases, and at moderate dissipations
(e ∼ 0.8) with β > 0.5, the flow becomes unstable for all solid fractions. We have
found that the two-dimensional perturbations (kz = 0) are most unstable for φ > φs

c

for any value of β , while the three-dimensional perturbations are most unstable for
φ < φs

c .
From a long-time analysis of the stability equations for general streamwise-

dependent (kx �= 0) perturbations with ky, kz �= 0, we have found that the micropolar
granular shear flow remains linearly stable as t → ∞. The effects of the spin fields lead
to enhanced decay rates of some hydrodynamics modes owing to the additional
damping mechanism of the vortex viscosity. The short-time analysis of these
streamwise-dependent perturbations (with A(t) = A0 in equation (4.7)), however,
revealed that the flow supports ‘positive’ initial growth rates, owing to both travelling
and stationary waves, for all combinations of kx , ky and kz in the long-wave limit,
implying that the flow is subject to transient ‘exponential’ growth of perturbations
for kx �= 0. Such transient growths are important if the instability time scale is such
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that the perturbation-amplitude can grow to a sufficiently large value within the
time scales of the base flow. With the inclusion of spin fields, we have found that
the instability time scales are, in general, smaller than that for smooth particles,
and this effect becomes increasingly pronounced in the quasi-elastic limit (e ∼ 1)
for which the instability time scale for β > −1 can differ from that for β = −1 by
an order of magnitude. Hence, the transient ‘exponential’ growths are likely to play
an important role on the dynamics of rough granular particles in the quasi-elastic
limit.

The pure spanwise instability corresponds to the ‘banding’ of particles in the
spanwise direction (sometimes called ‘vorticity-banding’ since the base flow has a
non-zero vorticity component along this direction). On the other hand, the pure
transverse instability corresponds to ‘transverse-banding’ of particles (sometimes
called ‘gradient-banding’ since the base flow has gradients along the transverse
direction). Both these instabilities belong to a separate class of instabilities, known
as ‘constitutive’ instability (Joseph & Saut 1986; Alam 2006). In particular, both
instabilities are short waves in origin, and their short-wave cutoffs are a consequence
of the translational and rotational granular conduction terms in the respective energy
balance equations. Consequently, both survive in the long-wave limit, and hence
the energy balance equations play the role of regularization of the field equations.
The inclusion of the spin fields does not change the basic characteristics (e.g. the
short-wave origin, the non-monotonic pressure–density curve, the non-monotonic
shear-to-pressure ratio and the loss of hyperbolicity; Alam 2006) of these constitutive
instabilities.

An important issue is the connection of the present stability results of unbounded
shear flow to those of bounded shear flow. As is known for the case of smooth
particles, all the reported instabilities would survive in the bounded shear flow
as well. However, there are additional instabilities (both stationary and travelling
waves) in the bounded shear flow of smooth particles that have no analogue in
its unbounded counterpart (Alam & Nott 1998). For a micropolar granular fluid,
the bounded shear flow is more complicated owing to the presence of the couple
stress which is known to play a prominent role near the boundaries (Campbell 1993;
Mitarai et al. 2002; Goldhirsch et al. 2005). It would be interesting to analyse the
stability of the bounded micropolar granular shear flow; work in this direction is in
progress.

We acknowledge the computational facilities at the JNCASR as well as the financial
support from a grant (PC/EMU/MA/35).

Appendix A. Beyond constant-β collision model: impact angle dependence
The micropolar constitutive model of Lun (1991) is based on a collision model

for which the tangential restitution coefficient β is taken to be a constant over the
whole range of impact angles (Φ , i.e. the angle between the contact normal and the
relative velocity of the contact point), and hence it provides an average description of
surface friction. For a more realistic collision model of rough particles with oblique
impact, we must take into account Coulomb friction that helps to distinguish between
the sliding and the sticking contacts (Maw, Barber & Fawcett 1981; Walton 1992).
The complexity of oblique impact has recently been demonstrated by Kuninaka &
Hayakawa (2004) who showed that the normal restitution coefficient (e) can exceed
unity in the oblique impact of an elastic disk on a soft/hard wall; they also found
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that e does not exceed unity when the contact angle is controlled by changing the
tangential impact velocity with fixed normal velocity. It is clear that a collision model
that takes into account all micro-mechanical features of particle collisions still remains
a distant reality.

Even though a constitutive model that takes into account the detailed micro-
mechanical features of particle collisions is not available, some effort has recently
been made to understand the effects of different ingredients of the underlying collision
model (see, Huthman & Zippelius 1997; Luding et al. 1998; Mitarai et al. 2002;
Jenkins & Zhang 2002; Hayakawa 2003; Goldhirsch et al. 2005; Herbst et al. 2005) –
this is an active research area. With Walton’s collision model which incorporates an
impact-angle-dependent tangential restitution coefficient, β(Φ), Herbst et al. (2005)
shows promising results. They found that while their mean-field theory (based on a
pseudo-Liouville operator formalism) with a constant-β approximation provides good
agreement with MD simulations (with Walton’s collision model) of a homogeneously
driven rough granular fluid for β ∈ (−1, 0.2), a variable-β approximation provides
excellent agreement for the whole range of β ∈ (−1, 1) for the temperature ratio
(θ0/T 0) as well as for the temporal evolution of translational and rotational
temperatures.

The above discussion suggests that a collision model with constant-β provides a
reasonable approximation to analyse the dynamics of a rough granular system. For
the whole range of β , however, we must consider the impact angle dependence on β .
A complete constitutive model based on a ‘variable’ tangential restitution coefficient
with Coulomb friction would be welcome, and may uncover new dynamical features
in a driven system like the shear flow.

Appendix B. Coefficient functions in the constitutive model
The non-dimensional coefficient functions, fi(·), in the expressions of pressure, shear

viscosity, bulk viscosity, vortex viscosity are given by (Lun 1991):

f1(φ; e) := φ(1 + 4η1N1(φ)), (B 1)

f2(φ, θ/T ; e, β, K) := s2223

[
5
8

+ s2021N1(φ)
][ 1

χ
+ s24φ

]
+ s25N2(φ), (B 2)

f3(φ; e) := s30N2(φ), (B 3)

f2r (φ; β, K) := s20rN2(φ), (B 4)

and s2021 and s2223 are functions of θ/T

s2021 (θ/T ) = s20 + s21

θ

T
, s2223 (θ/T ) =

1

s22 + s23 θ/T
, (B 5)

with N1(φ) = φχ and N2(φ) = φ2χ . Here, sij are functions of e, β and K , given by

s20 = η1(3η1 − 2) + 1
2
η2(6η1 − 2η2 − 1), s21 = −η2

2/K,

s22 = 12(2 − η1 − η2)(η1 + η2)/
√

π, s23 = −2s21/
√

π,

s24 = 4
5
(2η1 + 3η2), s25 =

(
2
5
/
√

π
)
(4η1 + 3η2), s30 =

(
8
3
/
√

π
)
η1, s20r = (2/

√
π)η2.

⎫⎪⎬⎪⎭
(B 6)

It is clear that µr → 0 as β → −1 (i.e. s20r → 0 as η2 → 0) and also as φ → 0.
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The non-dimensional functions for the translational (q) and rotational (qr ) heat
fluxes are given by

f4(φ, θ/T ; e, β, K) := s40

[
1

χ
+ s41φ

]
Γ2(φ, θ/T )

Γ1(θ/T )
+ s42N2(φ), (B 7)

f4h(φ, θ/T ; e, β, K) := s40

(
Γ3(φ)

χΓ1(θ/T )

)
, (B 8)

f4r (φ, θ/T ; e, β, K) := s40

(
1

χ
+ s43φ

)
Γ4(φ, θ/T )

Γ1(θ/T )
, (B 9)

f4rh(φ, θ/T ; e, β, K) := s40

(
1

χ
+ s43φ

)
Γ5(φ, θ/T )

Γ1(θ/T )
+ s44N2(φ)

(
θ

T

)1/2

, (B 10)

with the constants sij being given by

s40 =
25

√
π

128
, s41 = 12

5

(
η1 + 2

3
η2

)
, s42 = 4√

π
(η1 + η2), s43 =

8η2

3K
, s44 = 3

2
s43.

(B 11)

The functions Γi in the expressions of f4i are given by

Γ1(θ/T ) = 1
8
α1(θ/T )α6 − 25

24
α2α5(θ/T ),

Γ2(φ, θ/T ) = 2
5
α3(φ, θ/T )α6 + 2

3
α2α7(θ/T )N1(φ),

Γ3(φ) = 2
3
α2α8(φ) + 2

5
α4α6N1(φ),

Γ4(φ, θ/T ) = 1
5
α3(φ, θ/T )α5(θ/T ) + 1

25
α1(θ/T )α7(θ/T )N1(φ),

Γ5(φ, θ/T ) = 1
25

α1(θ/T )α8(φ) + 1
5
α4α5(θ/T )N1(φ),

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(B 12)

where the expressions for αi are

α1(θ/T ) = α10 + α11

θ

T
, α2 =

η2
2

K
,

α3(φ, θ/T ) =
5

2
+

(
α30 + α31

θ

T

)
N1(φ), α4 =

4η2
2

K
(2η1 − 1),

α5(θ/T ) = α50 + α51

θ

T
, α6 = η2

(
1 +

7

3K
− 2η2

K
− η2

K2

)
+ η1

(
1 − 4η2

3K

)
,

α7(θ/T ) = α70 + α71

θ

T
, α8(φ) =

3

2
+ α80N1(φ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B 13)

with constant functions

α10 = η1(41 − 25η1) − 8(η1 + η2)
2 + η2(41 − 25η2), α11 = −7η2

2

K
,

α30 = 6η2
1(4η1 − 3) − 4η2(2η1 − 4η1η2 + η2), α31 =

8η1η
2
2

K
,

α50 =
3η2

2

K
, α51 =

(
η2

2

K2
− η2

K

)
,

α70 =
4η2

2

K
(4η1 − 1), α71 = 8η1

(
η2

2

K2
− η2

K

)
, α80 =

4η2
2

K2
(2η1 − 1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B 14)
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The non-dimensional functions for the translational (D) and rotational (Dr )
dissipations are

f5(φ, θ/T ; e, β, K) := s50s5152(θ/T )N2(φ), (B 15)

f5r (φ, θ/T ; β, K) := s50s5253(θ/T )N2(φ), (B 16)

where s5152 and s5253 are functions of the temperature ratio

s5152

(
θ

T

)
= s51 + s52

θ

T
, s5253

(
θ

T

)
= −s52 + s53

θ

T
, (B 17)

with the constants s5j being given by

s50 =
48√

π
, s51 = [η1(1 − η1) + η2(1 − η2)] , s52 = −η2

2

K
, s53 =

η2

K

(
η2

K
− 1

)
.

(B 18)

The non-dimensional parameters η1 and η2 are defined via

η1 =
(1 + e)

2
, η2 =

(1 + β)K

2(1 + K)
. (B 19)

In the limit of perfectly smooth spheres (β = −1), the resulting transport coefficients
match those in Lun et al. (1984).

Appendix C. Elements of the stability matrix A(t)

The non-zero elements of the time-dependent stability matrix A(t) are (with cp =
1/φ0, ck = 8/Kφ0, cd = 2/3φ0 and λ0 = ξ 0 − 2µ0/3; ky(t) = ky − kxt):

A12 = −iφ0kx, A13 = −iφ0ky(t), A14 = −iφ0kz,

A21 = icp

[
−p0

φkx + u0
1yµφky(t)

]
,

A22 = −cp

[
(2µ0 + λ0)k2

x +
(
µ0 + µ0

r

)
k2

y(t) +
(
µ0 + µ0

r

)
k2

z

]
,

A23 = −cp

[
φ0u0

1y +
(
µ0 + λ0 − µ0

r

)
kxky(t)

]
, A24 = −cp

(
µ0 + λ0 − µ0

r

)
kxkz,

A26 = −2icpµ0
r kz, A27 = 2icpµ0

r ky(t),

A28 = icp

[
−p0

T kx + u0
1yµ

0
T ky(t)

]
, A29 = icpu0

1yµ
0
θ ky(t),

A31 = icp

[
−p0

φky(t) + u0
1yµφkx

]
, A32 = −cp

(
µ0 + λ0 − µ0

r

)
kxky(t),

A33 = −cp

[(
2µ0 + λ0

)
k2

y(t) +
(
µ0 + µ0

r

)
k2

x +
(
µ0 + µ0

r

)
k2

z

]
,

A34 = −cp

[(
µ0 + λ0 − µ0

r

)
kzky(t)

]
, A35 = 2icpµ0

r kz, A37 = −2icpµ0
r kx,

A38 = icp

[
−p0

T ky(t) + u0
1yµ

0
T kx

]
, A39 = icpu0

1yµ
0
θ kx,

A41 = −icpp0
φkz, A42 = −cp

(
µ0 + λ0 − µ0

r

)
kxkz, A43 = −cp

(
µ0 + λ0 − µ0

r

)
ky(t)kz,

A44 = −cp

[(
2µ0 + λ0

)
k2

z +
(
µ0 + µ0

r

)
k2

x +
(
µ0 + µ0

r

)
k2

y(t)
]
,

A45 = −2icpµ0
r ky(t), A46 = 2icpµ0

r kx, A48 = −icpp0
T kz,

A53 = −ickµ
0
r kz, A54 = ickµ

0
r ky(t), A55 = −2ckµ

0
r ,
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A62 = ickµ
0
r kz, A64 = −ickµ

0
r kx, A66 = −2ckµ

0
r ,

A72 = −ickµ
0
r ky(t), A73 = ickµ

0
r kx, A77 = −2ckµ

0
r ,

A81 = cd

(
u0

1y

2
µ0

φ − D0
φ

)
, A82 = icd

[
−p0kx + u0

1y

(
2µ0 + µ0

r

)
ky(t)

]
,

A83 = icd

[
u0

1y

(
2µ0 − µ0

r

)
kx − p0ky(t)

]
, A84 = −icdp

0kz, A87 = 2cdu
0
1yµ

0
r ,

A88 = cd

[(
u0

1y

2
µ0

T − D0
T

)
− κ0

(
k2

x + k2
y(t) + k2

z

)]
,

A89 = cd

[(
u0

1y

2
µ0

θ − D0
θ

)
− κ0

h

(
k2

x + k2
y(t) + k2

z

)]
,

A91 = −cdD0
rφ, A92 = 2icdµ

0
rΩ

0
3ky(t), A93 = −2icdµ

0
rΩ

0
3kx, A97 = 4cdµ

0
rΩ

0
3 ,

A98 = cd

[
−D0

rT − κ0
r

(
k2

x + k2
y(t) + k2

z

)]
,

A99 = cd

[
−D0

rθ − κ0
rh

(
k2

x + k2
y(t) + k2

z

)]
.
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